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We characterize homogeneous patterns, their stability, and phase transitions in nematic liquid
crystal polymergLCP9 with imposed elongational flows. We combine the flow-induced analysis of
order parameters by Sest al. [J. Chem. Phys92, 792 (1990], Bhaveet al. [J. Rheol.37, 413

(1993], Rey[Macromol. Theory Simul4, 857(1995], and WandJ. Non-Newtonian Fluid Mech.

22, 147 (1997], with the pure nematic, full tensor analysis of Shimadal. [J. Chem. Phys38,
7181(1988]. To make contact with these seminal studies, we select a moment-averaged Doi kinetic
model for flows of rod-like nematic LCPs with a quartic short-range intermolecular potential; the
connection with alternative kinetic and continuum models for flows of LCPs is noted. New
elongation-induced director instabilities are revealed for patterns previously identified as candidates
for stable pattern selection. From a full tensor analysis, we determine the complete phase diagram
for homogeneous patterns in the parameter space of LCP concentration and elongation rate. With
respect to experimental predictions, in axial extension, biaxial patterns exist but they are all unstable
and the only stable patterns are uniaxial; in planar extension, above a moderate concentration the
only stable nematic patterns are biaxial. Z000 American Institute of Physics.
[S1070-663(100)03003-9

I. INTRODUCTION theory, the orientation variable is the average with respect to
o _ _ the probability distribution function of the second moment of
Nematic liquid crystal polymereL.CPs in a flow field  the molecule axis, yielding aorientation tensor Quhich is
may exhibit either uniaxial or biaxial symmetry at different \anK 2, symmetric, and traceless. There is ample evidence
locations and time depending on the nature of the flow fieldy ¢ in elongational flows this approximate theory provides a
and the polymer concentration. Nematic orientation is a Me300d model for flow-induced patterns and phenomena, in-
soscale property, reflective experimentally of averages Overauding homogeneous phase transitions and fiber floWs.

cloud of rod-like molecules. A uniaxial symmetry obtains The reader is referred to Feng and !8at2and Wang® for

v_vh_en there_ 'S a S|_ngle prefgrre_d dlrec_t|on of or_lentatlon, de'c:omparisons of the Doi model employed below and various
fining a unique director, with isotropic order in the plane

orthogonal to that director; a single order parameter rovideglternatives in elongational flows.
9 ' 9 P P The upshot of these studies is that the standard Doi clo-

the averaged degree of order with respect to the diStinéure model with short-range elasticity provides a quite rea-
guished director. Biaxial symmetry occurs when there is no bl del for th 9 ¢ 3{ z here: h d
plane of isotropy, but rather three principal axes of meso>0Nabie model for the purposes staled here. homogeneous

scale orientation, and the degrees of orientation with respe@2tem selection in an imposed elongational flow. In weaker
to each principal axis are distinct. flows, such as imposed sheg_r, the predictions of Doi-type
Certain orientation patterns are consistently measured iffodels are fi‘r more sensitive to the type of closure
steady flow processes, presumably consisting in local Spaﬂgpproxmatlorﬁ We note further that the mesoscale aver-
regions of stable equilibria that respond to the particular flow?9ed model that arises from a Doi—Edwards kinetic theory is
in that region. In these local regions, the LCP may be readualitatively very similar to continuum models developed by
sonably approximated as a spatially homogeneous LCHBeris and Edwards, for example. A proper choice of param-
There are several competing models for flows of LCPs; thé&ters allows one to relate the two modédee pp. 556-559
texts by Beris and Edwardisind Larsof provide an excel- 0f Ref. 1). While quantitative predictions made in the follow-
lent summary of both continuum and kinetic theories. ing are specific to the Doi closure model, qualitatively simi-
We select for this study the short-range elasticity theonjar results are obtained from continuum models and other
of Doi,® which is a moment-averaged kinetic theory modelmoment-averaged kinetic models. Alternative studies of
based on the Doi closure approximation. In this mesoscal@ow-induced patterns and stability can be found in the works
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of Khoklov and Semeno¥’ Wang and Gelbar and Hu and

Ryskint”*8which employ Onsager-type models. V=Y T 5T 52, )
Physical applications have motivated earlier studies of ] ) _

patterns in imposed elongatiéfi®128913 |n extrusion  9iven in rectangular coordinateg,{/,z) with respect to the

manufacturing the flow away from boundaries is well ap-P3SiS 6.6 .€,). o
proximated locally by unidirectional elongation; in film and For v>0, the flow stretches along tfeaxis which we

sheet manufacturing, or in squeezing flow between paralle(faII axial or .unld!rectlonal.elongatlon, for<<0, the flqw
. L . . stretches radially in the entire plane orthogonal tozlais,
disks, there are interior flow regions approximated by planar , : o .
which we call planar or bidirectional elongation.

elongation. Patterns that form are likely to have orientation . . : .
truct that is locallv built f ilibria of LCPS with The primary questions addressed in the seminal papers
structure that 15 focally bullt from equilionia o S WIN jisted above consist of the following.

short-range intermolecular potentials in pure elongationa (1) How is the equilibrium isotropic-to-nematic phase

flow. _ _ _ ) transition at critical LCP concentration altered by the pres-
The present study is restricted to this special flow-g,ce of a steady flow field?

nematic physics as a model for which we can develop a (2) What types of steady-state nematic patterns are cre-
detailed understanding of the nematodynamic response tged by an imposed flothere elongation3®

elongational flow. We provide new information beyond that  (3) How many distinct nematic patterns coexist at pre-
presented in earlier seminal studies on flow-induced homoscribed values of the dimensionless LCP density parameter
geneous patterds 21316~ particular we analyze the full (N) and Peclet numbe(Pe, the ratio of elongational rate to
orientation tensor, extending the uniaxial results of Refs. 9. CP molecular relaxation rafe

and 13 and the biaxial order parameter results of Ref. 8, (4) What and where are the phase transition boundaries
providing acomplete phase diagrarall flow-induced homo- in (N,P&?

geneous equilibria and their stability; all phase transitions; (5) What are the stability properties of all steady state

Xy

and the orientation modes of every instability. patterns? _ _
Our linearized analysis is similar to the full tensor ana-  (6) What stable patterns co-exist at any fix¢iPe?
lytical treatment of Shimadat al,'® who worked with the Answers to such fundamental questions are clearly valu-

kinetic theory for nematic LCPwithout flowto elucidate the ~able in guiding or explaining experiments and manufacturing
Doi model description of the isotropic—nematic phase tran{rocesses in which elongational flow is dominant. A striking

sition. The analysis of Ref. 19 was reproduced in the DoX@mple of success of the Doi averaged model is given by

closure approximation in Ref. 6 to analyze both the istropic—N€ flow reversal phenomenon in filament flows of LCPs
hown experimentalj and reproduced from numerical

nematic and nematic—nematic phase transitions without flow?

The key observation in Ref. 19 is an explicit basis of tenso—Slrnulatlons of the Doi modél The above questions are in-

rial eigenfunctions of the linearized Doi model, and the keydependent of free boundary effects, and so are potentially

. . . . . . easier to address.
observation here is that with minor modification this same . ! . . L
Of particular interest here is the uniaxial versus biaxial

s e s ey s e 4,y S s . e o
9 o o Y €q stability and instability. Recent experimental technidies
homogeneous uniaxial and biaxial equilibria!

. . allow full tensor resolution 0ofQ, so the analytical under-
The present study applies at a mesoscopic scale set

) X 9= 2= Slanding of the uniaxial and biaxial behavior becomes nec-
the moment averaging with respect to the probability d|str|—essary to properly interpret experimental data, and even to

bution function, and where polymer—polymer excluded vol-gige the data collection. Our interpretation of tensorial basis
ume interactions are presumed to dominate pattern selectiog,qdes in terms of splay, bend, and twist is due to Shimada
At a larger mesoscopic scale, a variety of patterns and texs; 5119

tures are observed, where long-range Frank elasticity surely
is important, and defects mediate the different local patterns.
We 2r1efer to the worzk of Larson and MedliLarson and || TLREE-DIMENSIONAL FORMULATION
Doi,?! Tsuji and Rey?? and Kawaguchi and DeAhfor stud- _
ies aimed at resolving textures, which require a layer of comA. The moment-averaged Doi model

plexity beyond that considered here. We recall the moment-averaged equations governing ori-
We now set the precise foundation for this paper.entation and flow of LCPs as developed in Bhavel.*

Doi?*?> and Bhaveet al* developed a kinetic theory for Conservation of linear momentum:

flows of spatially homogeneous LCPs in a Newtonian sol-

vent, subject to an anisotropic hydrodynamic drag and a p=—-V=V-7, 2

polymer-polymer mean-fieldshort-rangg interaction with dt

Maier—Saupe potential. Se al,’ Bhaveet al,* Rey® and  wherep is the density of the polymeric liquids is the ve-
Wang'® have applied the moment-averaged nematodynamifocity, = is the total stress tensor adddt denotes the mate-
equations(hereafter called the Doi modeto predict spa- rial derivative defined byd/dt= 9/t +v-V. Note that ex-
tially homogeneous nematic patterns that can be supportadrnal forces are ignored.

by an imposed, pure elongational velocity fietd Incompressibility:
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V-v=0. (3)  ties not resolved in Refs. 9 and 13, while we capture full
I . ) tensor stability propertie@n particular, director instabilitios
Constitutive equation for stresses: not resolved in Re.

=—pl+7, B. Representations for Q

The key to our analysis lies in understanding and ma-
nipulating the orientation tens@. We pause here to recall
two essential representations@f how they correspond, and

F(Q)=(1-N/3)Q—N(Q-Q) +N(Q:Q)(Q+1/3), how special forms o (e.g., uniaxial, biaxial but with fixed
whereD= [ Vv+ Vv] is the rate-of-strain tensoVy hasi, j directorsg are explicitly characterized within each type of
componentdv; /dx; in Cartesian coordinateg, is the pres- ~representation.

sure, n is the solvent viscosity) is a relaxation time asso- 1. Component representations for  Q

ciated with rotation of the dumbbell moleculess the num- o )
ber of polymer molecules per unit volumey is the A component representation is a standard matrix repre-

dimensionless polymer concentration which measures thgentation with respect to a chosen coordinate syst@m:
strength of the intermolecular short-range Maier—Saupe po= (Qij) With Q;;=Qj; and trQ) =0, whereQ;; are compo-

7=27D+3ckTF(Q)+ 2\ (VVv:Q)(Q+1/3)], (4)

tential, Q is the orientation tensordefined by nents with respect to a coordinate basis. Here we use rectan-
gular coordinates for whichQ;; =Qxixj, with Q=2Q;;&
Q=(me®m)—1/3, (5 ©®g. Forthese coordinates, the symmetric traceless matrices

form a five-dimensional vector space with the basis:
wherem is a unit vector in the LCP molecular direction, the

average (@)) is with respect to a molecular probability den- 1 0 O -1 0 O
sity function consistent with rigid rod moleculek,is the (1— 1 0|, g®=| 0 1 0|,
Boltzmann constant, antlis absolute temperature. We note
that the general orientation tens@y, defined by(5), is a L0 0 -2 0 00
symmetric, traceless, rank two tensor. This means that once _ i @)
coordinates are specifie@ is represented as a symmetric, 10
traceless, X3 matrix, i.e.,Q has five independent compo- Q®=|1 0 0],
nents in general. The orientation-dependent stress contribu- 0 0 0
tion in (4) corresponds to anisotropic viscoelastic behavior of ) ;
LCP flows; the flow-orientation system is closed with the ‘0 0 1T 0 0
Nematodynamic equation f@:
QW= 0 0|, Q®=l0 0 1 )
%Q—(VV'Q-‘FQ'VVT):gD—Z(VVZQ)(Q+|/3) 100 01
Then,
g
N F(Q)u (6) Q: Qll_; Q22Q(l)+ QZZ; QllQ(2)+Q12Q(3)

whereF is defined in(4) ando is a dimensionless parameter
describing the anisotropic drag that a molecule experiences +Q13QM™M+Q,Q0). 9

as it moves relative to the solution{0r<1). The isotropic |, Refs. 6 and 19 this basis is instrumental in solving the
drag condition iso =1, and the highly anisotropic drag limit |inaarized pure Doi theory, governed @) with Vv=0,

is o=0. ~about isotropic and nematic equilibria. This basis has also

Remark:As in Refs. 4, 8, 9, and 13, we use the DOi poen tilized by Sonnett al3 The basis{Q"}>_, is fixed,
closure approximation in the above averaged equationgith the “orthogonality property” that trQ(i),Q(j)) is pro-
Wang? has extensively studied the results for three types Ohortional to 5 .

closure rules, that of Doi, Hinch—Leal {HL1)3° and With respect to the based) and (8), Q) is a splay
Hinch—Leal 2(HL2).*° His analysis is restricted to a uniaxial y,o4ewith respect toe,, Q) and Q® correspond tawist

tensorQ, i.e., a scalar order parameter assumption as in Refnodes Q(4) and Q(S) correspond tdend model?
9, the conclusion of Ref. 13 is that the Doi closure rule and

HL2 closure rule are most consistent with full kinetic theory
predictions for imposed elongational flows and a uniagal
tensor. The HL1 rule yields spurious uniaxial equilibria in Traditional “continuum” approaches to LCPs posj
elongation(Ref. 13 and so is not pursued here. Because ofon the basis of its eigenvalues and eigenvectors, in contrast
the rational and transcendental form of the HL2 closure ruleto its components. Sind@ is symmetric, the eigenvectors of
we restrict this study to the standard Doi closure which preQ form an orthonormal basis oR®. From the spectral
serves the order of nonlinearity of moments. From this saméheorent?if d; is the eigenvalue associated with eigenvector
model, Re§ captures biaxial equilibria and stability proper- n;, then

2. “Spectral” representations for Q
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B=0, with uniaxial order parametsf=s

and directon=ng;

0.5 i
s=0, with uniaxial order parametsy=
=1 S ” _________________ and directon=ny,; (14)
-0.5 :

s= 3, with uniaxial order parametsy=—s

L& and directon=n;.
— -0.5 0 0.5 1
S

In terms of the basi®, Q) is the unique uniaxial tensor,
FIG. 1. The range of the pair of biaxial order parametermnd 8. The co.rre§pond|ng in(12) to =0, with d”‘eCtO.r ns=¢,, and
uniaxial limits are8=0, s=0, ands= . uniaxial order parameters, or equivalently, Q
=—(s/3)Q™W. When 0<s<1, the liquid crystal exhibits
“prolate” uniaxial symmetry; when—1/2<s<0, there is
“oblate” uniaxial symmetry;s=—1/2 corresponds to the
1 LCP molecule aligned somewhere in the plane orthogonal to
= . —— . . L= .. 2 L= .
Q_E (d' 3>n|®n|, di={(m;-m)), E di=1. n; s=1 corresponds to parallel alignment nfand m; s
(10 =0 corresponds to an isotropic state in which molecular ori-

) ) 3 entation is equally probable in all directions.
SinceQ and (m®m) share the same eigenvectofs;};_;

are the “directors” of the nematic LCP. The direction co-

sinesd; characterize, in a nonlinear averaged sense, the d(ﬁ—l SPATIALLY HOMOGENEOUS PATTERNS IN
grees of orientation of the LCP molecules with respect tOIMPOSED ELONGATIONAL ELOWS

each director. These define two independent scalar order pa-

rameters, Following Refs. 4, 8, 9, and 13, we impose a simple
elongational flow,(1). The key observation of Seat al?® is
s=d;—d;, B=d,—d;, (11  thatin rectangular coordinates, the velocity gradient is con-
stant:
which physically correspond to the degree of anisotropic or-
der in the plane of rf3,n;), (n,,ny), respectively. From Vv=vdiag —%,— %,1). (15)

(10), Q then admits a biaxial spectral representation: ~
Therefore, the momentum equati®), with 7 given by (4),

is trivially satisfied ifQ is independent of, i.e., for spatially
homogeneous patterns. Moreover, siffoe is constant, the
The range of ,8) is a closed triangular region in the,3)  flow-driven Doi nematodynamic equation for spatially ho-
plane; see Fig. 1. This representation is equivalent to th&10geneous) in the presence of imposed elongational flow
biaxial representation in Refs. 33 and 8. remains an autonomous tensor ordinary differential equation

in the scaled time variable= (a/\) t, ()= (d/dt):

Q=s(nz®nz—1/3)+ B(n,@&n,—1/3). (12

C. Uniaxial limits

If all the eigenvalues of) are distinct, the nematic LCP Q=-FQ+G(QD),
is fully biaxial. Uniaxial nematics are defined by the condi- I (16)
tion that two eigenvalues @ are equal; the eigenvectan) == = AR R, _
associated with the simple eigenvalue is distinguished, and G(QiD)=DQ+QD+ 3D=2D:Q| Q-+ 3
called theuniaxial director. Since trQ)=0 there is one in-
dependent eigenvalue, which defines a distinguished single
order parameter.

Wl N

here

The conditions folQ to be uniaxial take different forms. D=Pediag— 1/2,— 1/2,1), Pe= ﬂ (17)
From the spectral representatidr®), the uniaxial conditions T
are immediate: Pe is thePeclet numberthe critical flow/orientation dimen-
sionless parameter, measuring the ratio of the elongational
d,=d,, d;=ds ratev and the orientational relaxation time~raté}\, F(Q) is
given in(4). Note that botH-(Q) andG(Q;D) are symmet-
or ric and traceless, therefore the fixed bd€§"}>_,, (7) and
(8), remains valuable in identifying the special properties of
d,=ds; (13)  (16); the coupled scalar form ¢6) is given in Appendix A.

It should be pointed out that if16) F is based on the Maier—
in terms of the order parameters, ) and Fig. 1: Saupe intermolecular potential, but any quartic potential that
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reflects the I-N transition yields to a similar analysis.
Wang'® shows for uniaxial the different forms of andG
for different closure rules.

Observe that the flow-induced contributid®(Q;D), is
a constant coefficienjuadratic polynomial perturbation of
the cubic polynomial equationPrevious uniaxidl*® and
biaxial*® order parameter analyses have exploited this fact
by calculating perturbations of the pure nematic equilibria
and their stability. All equilibria are continuations of the
Pe=0 case, since the number of complex equilibria of a sys-
tem of cubic polynomial equations cannot increase under

guadratic perturbation.

We now list observations which guide the analysis to

follow.
(1) Without flow, all equilibria are uniaxidl.(This fact

-0.5

wo
e
4
-

FIG. 2. lllustration of symmetry-broken genesis of biaxial equilibria for a
fixed concentration=4). Prior to the imposed flowPe=0), there are
three uniaxial equilibria on each uniaxial subspage,0, s=0, s= 8. With

app"es Only to quartic intermolecular potentials and to C|o_imposed axialPe=0.1) and pIanal(Pe=—O.1) elongation, the equilibria on

sure rules which preserve the degree of moments, e.g., D{ﬂ

and HL1 closures.

(2) With pure elongational flow, a simple continuation
algorithm calculates all equilibria of16). For Pe=0, the
critical concentrations ald=8/3,3, and all Pe-induced tran-
sitions in type(uniaxial versus biaxia) number, and stability
of equilibria emerge from these two bifurcation points.

(3) For the elongation-driven modé€l6), the full sym-
metry by orthogonaV is broken, but ane-dimensional con-
tinuous symmetry is preservéa all orthogonalV that pre-
serve the axis of flow symmet,

cos{ sin O
V=| —sin{ cos{ O (18
0 0 1

e surviving uniaxial subspacg=0 survive as uniaxial steady states.
owever, thes=0 ands= 3 uniaxial subspaces are destroyed, and their
corresponding equilibria either deform into biaxial equilibrium patterns or
are destroyedbecome complex and therefore nonphysical

us to fix the directorsy, n, parallel tog, g, i.e., to fix
{=0. The governing biaxial order parameter equations are
then

si=Pd1-B+s+pBs—2s?]-U(s)+3Nsp(s—B—1),
(21)
Bi=Pd B?—2Bs—B]1-U(B)+5NsB(B—s—1).

Elongation-induced equilibrium patternghe construc-
tion of all equilibria of (16) is straightforward. As noted by

This observation is important in determining any degeneracheya two of the uniaxial limitss=0, s= g, are no longer

of equilibria of (16). In particular, sinc&Q™ is a fixed point
of the similarity transformation by,

VQ(l)VTIQ(l), (19

all uniaxial equilibria of (16)are unique. All biaxial equilib-
ria, however, will be seen to have one director paralled,to
and thusall fully biaxial equilibria have a continuous sym-
metry corresponding to arbitrary orientation of the remain-
ing two directors in the x,y plane

Contact with previous uniaxidl®™® and biaxial® order

parameter equations for elongation-induced homogeneous

patterns

(1) The scalar order parameter equation of Refs. 9 an

13 follows by assumin® proportional toQ*). The govern-
ing scalar order parameter equation is

s=Pd1+s—2s]-U(s). (20)

(2) The biaxial order parameter equations of Ref. 8 fol-

low by assumingQ in the span ofQ®Y), Q®), or equiva-
lently, by positingQ of the form(12) with n;=e,, n,=¢, or
g . Note that solutions of16) are invariant with respect to
the similarity transform by, (18), thus each equilibrium
(s,B) corresponds to a family of equilibria, with;, n, in
arbitrary position in thex, y plane. This observation allows

preserved by the nematic equati@i®), but the fixed points
that evolve from these uniaxial limits do surviwather as
biaxial equilibria patterns or as nonreal, unphysical equilib-
ria. Figure 2 illustrates the persistence of uniaxial equilibria
whose director is parallel te, as well as the emergence of
biaxial steady states for P® arising from the flow-
independent uniaxial equilibria whose directors wenat
aligned withe,. This result is intuitively quite natural, and it
is noteworthy that the Doi closure model captures the phe-
nomenon precisely.

Stability of equilibria. From the above remarks, it fol-
lows that all changes in the number of equilibria occur

ﬁ!Ivithin the order parameter equatiofdl). Their stability,

owever, requires analysis of the remaining three “director
modes.” This extension of the linearized stability of equilib-
ria is the fundamental new contribution of this paper. The
linearized stability for the order parameter systétt) is a
straightforward 2 2 linear algebra calculation accessible by
symbolic software; the linearized eigenvalyes, w, about
any equilibrium ,8) =(s*,8*) are

3 Pe
p1=— (25— B)—~[1~N/3—4NSB/3+4NE/3

+4Ns/3— /AT,
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3Pe Pe U(s) 2Ng
,u2=—T(ZS—B)—[1—N/3—4NS,8/3+4N,82/3 ,LL5=—?(—1—2B+4S)— T+T(1_S+’8) .

+4NS?/3+ JA], _ :
\/_] Remark:Note that a restricted order parameter analysis

Canor 2 5 s ) (22) of (21) fails to detect director instabilities. In Table I, the
A= ENYs%(s—1)2+ B4 B—1)2+3sB(s+ B+5P) biaxial patterns8!, B* in regions IlI-V each have an insta-
bility in one of the bend mode®®), Q).

All that remains then is to track the phase transitions
(bifurcationg that we previously observed must emanate
from Pe=0 and the two bifurcation valuegd=$ andN=3.
The corresponding linearized eigenfunctions consist of non©Of course, this continuation of the bifurcation branches is
trivial linear combinations oQ™), Q(®). Remarkably, the accomplished numerically.

—sPB(2s*+2B%+1)]+ 2N Pd2s(s—1)?

—B(B—1)%2+sB(4—3s+3B)]+ :P&(2s— B—2)°.

remaining three linearized eigenfunctions are preci€éf), Phase transitions emanating from=N, Pe=0 (Fig.
QM™, Q) a fact which immediately yields explicit formulas 3). There are three distinct saddle-nod®N) bifurcation
for the linearized eigenvalugss, us, us: points, &%, 8*)=(%,0), characterized by,(s*,8*)=0 and

po(s*,B*)#0; and €*,8%)=(03), (s*,8*)=(—17,—3),
characterized byu,(s*,8*)#0, wo(s*,8*)=0. Their fate
under imposed elongation is as follows.
(1) The SN §,0) persists as aniaxial SN bifurcation
L= — P_e(_ 1+4s-28)— [&5) n M(_ 1- 25+ Zﬁ)}, for Ee#O; see branch AFE')J', Fig. 3. Crossing AFD.J from [eft
2 S 3 to right, for example by fixing the flow rate and increasing
23) the concentration, the number of uniaxial equilibria jumps by
two.
(2) The remaining two SN bifurcations, §),and (- 3,
—1), persist assimultaneous biaxialSN bifurcations for
TABLE |. Dimension of instability for all steady states in axial elongation Pe#0: see branch GBFE, Fig. 3. Crossing GBEE from left to

U(s) Ng
T+NS+ ?(Zﬁ_l_ZS)

ps=—Peg1l+2s5-p)—

flows. . . e .
right, the number of biaxial equilibria jumps by four.
Type of Phase transitions emanating from =8,Pe=0 (Fig.
Region steady states 1-D subspace 2-D subspakell 5-D space  3). The isotropic equilibriums= =0 is doubly degener-
I pl 0 0 0 ate, i.e., both components of the polynomial vector fi@lt)
) vanish to second order, so that bath and w, vanish absent
I P 0 0 0 of flow.
PZ la 1a 1&1 i i ; 3 .
p3 0 0 0 (1) The continuation oft; =0 for Pe>0 is auniaxial SN
branch ABCH of Fig. 3. Crossing ABC from left to right the
1 P 0 0 0
P2 la 1a 1a
P 0 0 0
B! 0 2 P
BZ 1f 2f,d ¢ G
B® 1 2e 0.041
4 e I
B 0 1 . Dy
v P 0 0 0
B! 0 i / H
B2 A ot 0.02
B3 1f 2fe
1/ III
B 0 r AB v
V: ot 12 2ab gabcde op t 3’5 "1 N
OZ 0 1b 4b,c,d,e
P! 0 0 0 VI
B! 0 1 AN
B2 1f of.d -0.02 1 N
B3 1f 2fe \\
B* 0 1° AN
3Splay mode instability with eigenfunctio@‘®. -0.04 1 \
bTwist mode instability with eigenfunctio®(®. \
Twist mode instability with eigenfunctio®(®. K 3 !
9Bend mode instability with eigenfunctio@.
®Bend mode instability with eigenfunctic®®. FIG. 3. Flow-driven phase diagram in the parameter spddee.The phase
*Mixed splay and twist mode instability with eigenfunction in the @i, transition curves correspond to loci {iN,Pe along which the linearized

Q@) eigenvaluesu, or w, vanish corresponding to degenerate equilibria.
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TABLE II. Dimension of instability for all steady states in planar elongation number of unstable tensorial eigenfunctions within each sub-
flows. space that contains the given equilibrium; and finally, the

Type of superscripts convey the particular tensorial eigenfunctions
Region steady states 1-D subspace 2-D subspafBell 5-D space  for each instability. The stable equilibria, as deduced from
the five-dimensional5D) full stability analysis(the last col-

VI: o! 0 r 2ne _ )
p1 0 0 e umn of Tables | and )| are listed in bold type.
p? 12 23b gabede Referring to Fig. 3 and Tables | and Il, we summarize
B: 0 o the major results.
23 if gf:d:e (1) The symmetry(18), restricted to uniaxial equilibria

B 0 0 (19), impliesuniaxial steady states are discrete, or isolated
solutions of(16). For biaxial equilibria, however, similarity

VIE o’ 0 r 2;2 transform byV, (18), maps any equilibrium with anglé
iz 2a ga Jade =0 to arbitrary {, maintaining the order parameters and
B! 0 0 moving the distinct biaxial directons;, n, to angle with
B* 0 0 respect toe,, e, . Every biaxial equilibrium therefore corre-
ViI: ot 0 0 0 sponds to a continuous familyith the corresponding zero
pl 0 0 e linearized eigenvalugus. Strictly speaking, no biaxial pat-
p2 12 12 Fde terns are linearly stable; some biaxial states have u,,
B! 0 0 M4, m5<0, u3=0, which is called center stable. Upon re-
?31: (1; (1; flection, this result is also intuitively clear, since there is
g 1 1 nothing in the flow or the LCP physics to select a distin-

guished direction in the—y plane. Again, the Doi closure
IX: o 0 P 2>¢ model captures this phenomenon precisely.

si 8 8 (2) Regions I, IV, V, and XI have a unique, uniaxial,
stable equilibrium. Note these are prolate phases for(Re
X: Oi 0 0 0 and oblate for P€O.
BBlu fl’f % (3) Regions Il and IlI, corresponding to axial elongation
B 0 0 (Pe>0), have bistable prolate patterns.

géu 1f 1f (4) Regions VI, VII, and IX have center-stable biaxial
patterns, with no uniaxial stable statf#¥/e remark that bi-

XI: o 0 0 0 axial patterns arise in pairs that are related through a simi-
aSplay mode instability with eigenfunctio@®. larity transformationV, (18), with {= 7/2. For example, in
bTwist mode instability with eigenfunctio®(®. region VII, B can be obtained froB* by rotating the two
JTwist mode instability with eigenfunctio@®. directorsn, ,n, in the plane orthogonal to the flow direction

instability with ei io@® 2 A .
5223 2832 :::Zg:ll:g :,'VVI':L' :;ggmﬂzggg(s,' by m/2. This discrete symmetry implies that the continuous

'Mixed splay and twist mode instability with eigenfunction in the @i Symmetry(18) applied toB* andB* yield identical continu-
Q). ous families] Stable oblate uniaxial and center-stable biaxial
patterns coexist in regions VIII and X.

L . ) (5) Biaxial order parameter instabilities of uniaxial states
number of uniaxial equilibria jumps by two, then Crossing gre revealed by a jump in the number of instabilities between
CH from left to right the number of uniaxial steady statesyhe gne_dimensional uniaxial and two-dimensional biaxial
drops by two. , , , subspaces in Tables | and II. For example, in region V, the

(2) The continuation o, =0 for Pe<0 yields complex 340 phase®! andO? each acquire a biaxial order param-

equnébrlrar.] o 0 for Pe<0 is abiaxial SN eter instability in the twist mod&®). A scalar uniaxial
(3) The continuation of.,=0 for Pe<0 is abiaxia analysis misses these phenomena.

branch KEDCI of Fig. 3, corresponding to the broken (6) Director instabilities are revealed by a jump in the

un|a>k<)|al slé/rg?mgtrly. Cr_lc?ss_lng KEDE from Iﬁﬁ to rlghf[, thel number of unstable modes between the 2-D order parameter
number of biaxial equilibria jumps by two, then crossing C and full 5-D tensor spaces in Tables | and II.

from left to right the number of biaxial equilibria drops by (a) Director instabilities ofuniaxial equilibria:

e

two.

(4) The continuation ofz,=0 for Pe>0 yields complex (i)  For Pe>0, in regionV the two oblate phased’, O?
equilibria. are unstable to all director modé€¥", i=3,4,5.

The phase transition curves of Fig. 3, as describedii) For Pe<0, in regions VI-VIIl a pure order parameter
above, separate th&l,Pe half-plane intoeleven distinct re- analysis leads to the erroneous conclusion that one
gions labeled 1-XI. For each region, Table(Pe>0) and prolate equilibrium, labele®?, is stable. In facP? is
Table 1l (Pe<0) provide a list of all steady states, both unstable to both bend mod€x*), Q® in all three
uniaxial (P' for each prolateQ' for each oblatej running regions. Thus, no prolate patterns are stable in planar
over the number of such stajesnd biaxial[B', i running elongation.

over each distinct biaxial order parameter pair,(3*)]; the (i) The oblate phas®! in regions VI, VII, IX has a
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(iv)

(b) Director instabilities ofbiaxial equilibria:

director instability in the twist mod€®® as well as ACKNOWLEDGMENT AND DISCLAIMER

the order parameter instability in the twist mo@€).
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tained herein are those of the authors and should not be in-

(i)  For Pe>0, in regions IlI-V a pure order parameter terpreted as necessarily representing the official policies or
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Q®™), Q) respectively. The lower branch&?, B®

are unstable to one order parameter mixed mode, but

also unstable to one bend mode. The upshot is that nAPPENDIX: FULL 5D FLOW-DRIVEN EQUATIONS
biaxial patterns are stable to axial elongation. _ . L

(i)  For Pe<0, stable biaxial patterns, label&d, B4, ex- g tLetQ_(Q”)t' The equation§(16)] for the five indepen-
ist in regions VI-X. The “lower” biaxial branches ent components are
B2, B3 in region VI are unstable to both berdirec- - 5
tor) modesQ®), Q®). Q1=3(—=9U(Q1)+6Q1;-2Q1;N-2Q1;N

+Q%,N—6Q%,Q1:N+Q3sN-6Q%;Q N

IV. CONCLUSION ~2Q22QuN-6Q2,Q};N-2Q3,N

From the Doi closure model with an imposed elonga- —6Q§2Q11N—2 Q§3N—6Q§3Q11N)

tional flow, we pull together previous results and analyses

(Refs. 19. 8, and )3to give a complete phase diagram of +Pe(3Q%+3Q1:Q2+ Qu— %),
homogeneous pattern selection: All elongation-induced equi-

libria, their linearized stability, all phase transitions, and the Q2= 1(—9 U(Qz) + 6 Qup— 2 Q2oN—2 Q%N+ Q%N
orientation modes and growth rates of every instability.

Uniaxial equilibria are isolated, whereas all biaxial patterns —6Q%,Q,,N+Q35;N—6 Q3;Q,,N

arise as a continuous family with arbitrary directors in the 5 5

plane orthogonal to the flow axis of symmetry. —2Q2Q11N=6Q1; Q2 N=2Qy; N
From a stability perspective, we isolate order parameter -6 Qilez N—2 Qis N—6 Q§3Q22 N)

and director modes of instability in the linearized analysis.

Every fully biaxial equilibrium has one zero eigenvalue, cor- +Pe(3Q5,+3Q11Q2+ Qui— 3),

3

responding to the rotational symmetry of directors inxhg

plane transverse to the flow axis; the neutral orientation
mode is always the twist mod®®). Some patterns are

sza_GQBQiN_GQnQBQnN_GQiQBN

stable to order parameter dynamics, and yet unstable to di- —3Q,,Q;3N-6 Q13Q§2N+3 Q,3Q1,N
rector modes, e.g., all biaxial patterns in axial elongation ) )
(Pe>0) suffer at least one bend mode instability. Thus, in —3Q13N=6Q35;Q13N—-2Q13N—-9 U(Qy3)

axial elongation the only stable equilibrium patterns are

1
uniaxial. In planar elongation, by contrast, above a moderate +6 Q1) +PeQ13(3Qu+3Q2+ 2),

(A1)

concentration and for arbitrary elongation rate, the only _
center-stable patterns are biaxial and there are no strictly Q12=%(—6leQle—GQ22Q12Q11N+3Q12Q11N
stable patterns.

2 2
The phase diagram presented here is robust to the qua- —60Q2Q12N+3Q22Q12N=3Q,N
dratic closure rule, in that any quadratic closure will simply 602 N—6 02 N—2 N
modify the equilibria and stability. Since the Doi closure QisQuz Q25 Quz Q2
model can be identified with the Beris—Edwards continuum +3Q23Q13N+6Q1,—9U(Q12)

model! predictions on pattern selection are qualitatively
similar. It is noteworthy that a Doi closure model with quar-

+PeQ1,(3Q11+3Qx—1),

tic intermolecular potential, or the analogous Beris—Edwards | ) 5
continuum theory model, yields intuitive predictions for ho- ~ Q23=3(—6Q23Q7;N—6 Q23Q2,Q11N—-3Q23Q1; N

mogeneous pattern selection in imposed uniaxial and planar
elongation. We thereby anticipate these qualitative results

—6Q,3Q5,N—6Q23Q7,N+3Q3Q:,N

can be used as a guide for processing windows in LCP con- —6Q:QN—3Q35;N—2Q,3N—9 U(Q,9)
centration ) and flow rate(Pe in extensional and film
manufacturing processes of LCPs. +6 Qy3) + PeQ,3(3Q1,+3Q55+ 3).
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These equations can also be written in terms of the basisliquid crystal polymers: I. Elongational flows,” J. Non-Newtonian Fluid

{QW}>_,, employing the expansiof®) and utilizing thatF,
(4), andG, (16), consist of symmetric, traceless terms:

Q=F(Q)+G(Q;D),

N 2 2 2 2
F(Q)=(1-N)Q+N(Q:Q)Q— §(2Q12_ Q2,— Q53— Q7

— Q15— 4Q11Q2) QM+ 5(QF,+ Q75— Q3,— Q%)
X Q@+ (Q11Q12+ Q1Q20+ Q13Q,9) QP

+(Q12Q25— Q13Q29) Q™+ (Q12Q13— Q23Q11)Q®),
(A2)

~ P
G(QB) =~ 5~ 2QuQ"+2(Qz- Q1) QP
+2Q1,Q% - Q10" - Q2:Q™].
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